Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation.
نویسندگان
چکیده
The aim of the present study was to determine the changes in phospholamban protein levels and their regulatory effect on sarcoplasmic reticulum (SR) Ca2+ uptake and left ventricular function in hypothyroid and hyperthyroid rat hearts. Hypothyroidism was associated with decreases in basal left ventricular function (+dP/dt and -dP/dt), whereas in hyperthyroidism these parameters were elevated compared with values for euthyroid hearts. The maximal SR Ca2+ uptake rates were 12.8 +/- 1.1, 15.5 +/- 1.2, and 21.4 +/- 1.4 nmol Ca2+ per milligram per minute, and the EC50 values for Ca2+ were 0.76 +/- 0.09, 0.41 +/- 0.07, and 0.30 +/- 0.05 mumol/L assayed in homogenates from hypothyroid, euthyroid, and hyperthyroid hearts, respectively. The relative tissue level of phospholamban was increased (135%) in hypothyroidism and decreased (75%) in hyperthyroidism compared with euthyroidism (100%). An opposite trend was observed for the SR Ca(2+)-ATPase, which was depressed (74%) in hypothyroid hearts but increased (134%) in hyperthyroid hearts. Consequently, the relative ratio of phospholamban to Ca(2+)-ATPase was highest in hypothyroid and lowest in hyperthyroid hearts, and these changes correlated with changes in the EC50 of the SR Ca2+ uptake for Ca2+. Stimulation of hearts with 0.1 mumol/L isoproterenol revealed that the relaxant effects were lower in hyperthyroid hearts and higher in hypothyroid hearts compared with euthyroid hearts, consistent with the alterations in the phospholamban levels. The maximal increases in the speed of relaxation, elicited by isoproterenol stimulation, correlated with the changes in the relative ratio of phospholamban to Ca(2+)-ATPase in these hearts.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Thyroid hormone-induced alterations in phospholamban-deficient mouse hearts.
Alterations in the expression levels of the sarcoplasmic reticulum (SR) Ca2+-ATPase and its regulator, phospholamban, have been implicated in the effects of thyroxine hormone on cardiac function. To determine the role of phospholamban in these effects, hypothyroidism and hyperthyroidism were induced in phospholamban-deficient mice and their isogenic wild types. Hypothyroidism resulted in signif...
متن کاملTargeting phospholamban by gene transfer in human heart failure.
BACKGROUND Myocardial cells from failing human hearts are characterized by abnormal calcium handling, a negative force-frequency relationship, and decreased sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) activity. In this study, we tested whether contractile function can be improved by decreasing the inhibitory effects of phospholamban on SERCA2a with adenoviral gene transfer of antisense phospho...
متن کاملSer16 prevails over Thr17 phospholamban phosphorylation in the β-adrenergic regulation of cardiac relaxation.
Phospholamban is a critical regulator of sarcoplasmic reticulum Ca2+-ATPase and myocardial contractility. To determine the extent of cross signaling between Ca2+ and cAMP pathways, we have investigated the β-adrenergic-induced phosphorylation of Ser16 and Thr17 of phospholamban in perfused rat hearts using antibodies recognizing phospholamban phosphorylated at either position. Isoproterenol cau...
متن کاملPhospholamban phosphorylation by CaMKII under pathophysiological conditions.
Sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a) transports Ca2+ into the SR, decreasing the cytosolic Ca2+ during relaxation and increasing the SR Ca2+ available for contraction. SERCA2a activity is regulated by phosphorylation of another SR protein: Phospholamban (PLN). Dephosphorylated PLN inhibits SERCA2a. Phosphorylation of PLN by either cAMP or cGMP-dependent protein kinase at Ser16 or t...
متن کاملImprovement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene.
The bradykinin-forming enzyme kallikrein-1 is expressed in the heart. To examine whether contractile performance and sarcoplasmic reticulum Ca2+ transport of the diabetic heart can be rescued by targeting the kallikrein-kinin system, we studied left ventricular function and sarcoplasmic reticular Ca2+ uptake after induction of streptozotocin-induced diabetes mellitus in transgenic rats expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 75 2 شماره
صفحات -
تاریخ انتشار 1994